

ENTROPY PRODUCTION IN THE TURBULENT CASCADE – A NEW CRITERION FOR UNIVERSALITY CONSIDERATION

Reinke Nico¹, <u>Peinke Joachim¹</u> & Nickelsen Daniel²

¹ Institute of Physics and ForWind, University of Oldenburg, Germany ² National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa

The analysis of 61 data sets of measurements of developed turbulence in jet flows, and wake flows of a grid and a cylinder are presented. The Taylor Reynolds number covers a range between 100 and 1000. For these data we analyse properties of homogeneous isotropic turbulence. Besides the common scaling analysis of structure functions, $S^n(u_r) = \langle u_r^n \rangle$, which is determined by the probability density function (pdf) $p(u_r)$, our results are based on a multi-scale analysis, which aims at characterising the joint pdf of the longitudinal velocity increments $u_r(x) = u(x + r) - u(x)$ for different scales $p(u_r; u_{r+\Delta}; ...; u_{r+N\Delta})$. In view of the joint probabilities, we do not split up the cascade process into the statistics of separated increments u_r , as it is done by the structure function analysis, but we analyse the whole cascade process, expressed by the evolution of an increment $u_{(\cdot)}$ from a large scale down to a small scale, typically chosen to be the Taylor length scale. Based on experimental evidence, see [1, 3], we assume that the cascade process is Markovian for a step size Δ larger than the Taylor length scale. This results into a factorisation of the joint pdf

$$p(u_r; u_{r+\Delta}; \dots; u_{r+N\Delta}) = p(u_r | u_{r+\Delta}) p(u_{r+\Delta} | u_{r+2\Delta}) \times \dots \times p(u_{r+(N-1)\Delta} | u_{r+N\Delta}) p(u_{r+N\Delta}).$$

$$\tag{1}$$

Note that this factorisation is a three point closure, as two increments with a common point x are defined by the velocity u at three points. The knowledge of the conditional pdf $p(u_r|u_{r'})$ for r' > r determines now the whole cascade and as shown in [1, 6] can be expressed by a Fokker- Planck equation

$$-\frac{\partial}{\partial r}p(u_r|u_{r'}) = -\frac{\partial}{\partial u_r}\left[D^{(1)}(u_r)p(u_r|u_{r'})\right] + \frac{\partial^2}{\partial u_r^2}\left[D^{(2)}(u_r)p(u_r|u_{r'})\right].$$
(2)

In this stochastic cascade approach one has determine the coefficients $D^{(1)}(u_r)$ and $D^{(2)}(u_r)$, called drift and diffusion coefficient, which give access to the conditional pdfs $p(u_r|u_{r'})$ over the Fokker-Planck equation, and thus also access to the joint pdf of equ. (1). The evolution of a single cascade path $u_{(.)}$ is given by a corresponding Langevin equation, which determines the evolution of u_r in scale by the same $D^{(1)}(u_r)$ and $D^{(2)}(u_r)$. To determine $D^{(1)}(u_r)$ and $D^{(2)}(u_r)$, at first their functional forms are determined by the estimation of the Kramers-Moyal coefficients, which are then successively optimised by solving equ. (2) numerically and minimising the difference between the thus numerically estimated conditional pdf and the experimentally determines ones [4, 2].

Based on this stochastic model of the cascade, i.e. of $u_{(\cdot)}$, it is possible to link the cascade to non-equilibrium thermodynamics. In particular, based on the works [7, 5], the entropy production of each single trajectory $\Delta S[u(\cdot)]$ can be evaluated by

$$\Delta S[u(\cdot)] = \int_{L}^{\lambda} \partial_{r} u_{r} \; \frac{D^{(1)}(u_{r}, r) - \partial_{u} D^{(2)}(u_{r}, r)}{D^{(2)}(u_{r}, r)} \, \mathrm{d}r - \ln \frac{p(u_{\lambda}, \lambda)}{p(u_{L}, L)}.$$
(3)

The knowledge of the entropy production allows to examine the validity of a generalised second law of thermodynamics for turbulent cascades, namely the integral fluctuation theorem (IFT), stating that

$$\left\langle e^{-\Delta S[u(\cdot)]} \right\rangle_{u(\cdot)} = 1.$$
 (4)

For all 61 data sets we find that the IFT is well fulfilled. i.e. the left side of equ. (4) converges to 1.01 ± 0.01 . Hence we take the IFT as a new fundamental law for the turbulent cascade. Based on this conjecture, it can be shown that all cascades process of the measured data exhibit non-scaling contributions. Furthermore, the intermittency causing contribution of the diffusion term $D^{(2)}$ shows clear non-universal behavior, as it depends on the Reynolds number and also, most surprisingly, on the flow type.

References

- [1] R. Friedrich and J. Peinke. Phys. Rev. Lett., 78:863, 1997.
- [2] D. Kleinhans, R. Friedrich, A. P. Nawroth, and J. Peinke. Phys. Letters A, 346:42-46, 2005.
- [3] St. Lück, Ch. Renner, J. Peinke, and R. Friedrich. Physics Letters A, 359(5):335-338, 2006.
- [4] A. P. Nawroth, J. Peinke, D. Kleinhans, and R. Friedrich. Phys. Rev. E., 76(056102), 2007.
- [5] Daniel Nickelsen and Andreas Engel. Physical Review Letters, 110:214501, May 2013.
- [6] C. Renner, J. Peinke, and R. Friedrich. J. Fluid Mech., 433:383-409, 2001.

^[7] U. Seifert. . Physical Review Letters, 95(4):040602, July 2005.