Bone thickness determines the detection accuracy of buccal bone level at implants in CBCT – An ex vivo study

Andreas Stavropoulos¹, Danijel Domic², Kristina Bertl^{1,2}, Salman Ahmad¹, Lars Schropp³, Kristina Hellén-Halme⁴

- 1 Department of Periodontology, Faculty of Odontology, University of Malmö, Sweden
- 2 Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Austria
- 3 Section of Oral Radiology, Department of Dentistry and Oral Health, Aarhus University, Denmark
- 4 Department of Oral and Maxillofacial Radiology, Faculty of Odontology, University of Malmö, Sweden

Aim

To investigate the impact of buccal bone thickness (BBT) on the detection accuracy of buccal bone level (i.e., depth of a buccal bone dehiscence) at implants in CBCT.

Methods

Two implant beds (narrow- and standard diameter) were prepared in 36 bone blocks of dry pig jaws. The implant beds were positioned at variable distance from the buccal bone surface (3 BBT groups: >0.5-1.0; >1.0-1.5; >1.5-2.0mm). In half of the blocks, a buccal bone dehiscence was created. Implants were mounted with a titanium abutment and metal-ceramic crown or with a zirconia abutment and crown. The extent of the buccal bone dehiscence was measured on CBCT and directly at the blocks.

Results

Abutment/crown material and implant diameter had no effect on the detection accuracy of the buccal bone level. In contrast, BBT was a significant parameter. When buccal bone was thin (>0.5-1.0mm), presence/absence of buccal bone dehiscence was judged wrongly in 48.5% of the cases. The average measurement error for the buccal bone dehiscence was 1.6mm.

Conclusion

BBT has a major impact on the detection accuracy of the buccal bone level at dental implants in CBCT; when buccal bone is ≤ 1 mm thick, detection of the buccal bone level is largely inaccurate.