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Computer vision systems that work: 
Movies, Games, Mixed Reality

1



CONTEXT



CONTEXT





 School and university in Cork, Ireland
 First job: Water-taxi driver

 Master’s and PhD in Edinburgh, Scotland
 Topic: 2D shapes, mainly the ellipse 

 Researcher in Engineering, Oxford University
 3D vision—things that stay still

 Researcher and Scientist, Microsoft
 3D vision—things that move
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CASE STUDY (1998)

3D modelling from uncalibrated turntable sequences



CASE STUDY

Automatic 2D point tracking



CASE STUDY

Automatically determined calibration and 3D structue
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Automatically determined calibration and 3D structue



CASE STUDY

Automatically recovered model: polygon mesh
Subpixel silhouettes for subvoxel marching cubes



CASE STUDY
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 “Let’s make a computer vision startup!”

 Somewhat unusual in 1999

 And nearly a very bad idea…

 Industries that need 3D models are quite particular
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CASE STUDY

Automatically determined calibration and 3D structure
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How?

1. Gather 100 test videos

2. Build metrics

3. Implement all known algorithms

4. Fix the broken metrics

5. Add 100 more videos



Troy (2004)
Warner Bros, MPC
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BOUJOU

 A computer program which makes 
inserting 3D objects easy

 Developed at Oxford University and 
at company “2d3”

 Now used in almost every movie

 Lord of the Rings series

 Harry Potter series

 District  9

and, of course…. Bridget Jones’s Diary

[demo]
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4 wide-angle tracking cameras
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4 wide-angle tracking cameras



2004

THINGS THAT MOVE
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J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class 
Object Recognition and Segmentation.  European Conference on Computer Vision, 2006



ASIDE: OBJECT RECOGNITION



RESEARCH: HUMAN BODY TRACKING

 Wide range of motion

 But limited agility

 And not realtime

R Navaratnam, A Fitzgibbon, R Cipolla 
The Joint Manifold Model for 
Semi-supervised Multi-valued Regression
IEEE Intl Conf on Computer Vision, 2007





THE CALL: SEPTEMBER 2008

“We need a body tracker with

 All motions…

 All agilities…

 10x Realtime…

 For multiple players…
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“We need a body tracker with

 All motions…
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“… but you have got 3D ”





front view top viewside view

input depth inferred body parts

inferred joint positions: no tracking or smoothing
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TRAINING DATA
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STEP 1: COLLECT TRAINING DATA

I was the one working on body tracking – yet my 
algorithms played no part

Jamie was working on farm animals – turned out to 
be the key
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Fitting subdivision surfaces to 2D data



Fitting subdivision surfaces to 2D data



Silhouette formation: 3D to 2D64
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Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences 
Taylor et al., ACM Transactions on Graphics 35(4), pp. #143, 1–12, Proc. SIGGRAPH 2016 69







Making hand tracking accurate

Collecting ground truth

Learning a better hand model

Machine learning



4D Ground Truth

148,000 hand poses

97 hand shapes



Synthetic training data are labelled images 

made using computer graphics.

Why use synthetic data?

• Clean labels without annotation noise or error

• Can make GT that is impossible to label by hand

• Easy to control variation in dataset

Synthetic training data
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Model-fitting iterations per secondMaking it fast on a (pair of) 
500MHz machines with 
128K RAM

- Optimize code
Great, we went to Floptimal

- Whiteboard malloc

- Use simpler models?
Great, but lose accuracy.
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Making it fast on a (pair of) 
500MHz machines with 
128K RAM

- Optimize code
Great, we went to Floptimal

- Whiteboard malloc

- Use simpler models?
Great, but lose accuracy.





Context



Gen3.  Everything has its natural structure
But we need frameworks to work with these structures

Gen 2: Everything’s a Tensor
And frameworks constrain us to think this 

way



Three (well, four) computer vision systems that work

1. Pure geometry
2. Machine learning with huge training data
3. Geometry + deep learning, again with big data

The future:
- More hybrids
- More data
- More models
- More hardware


