safety-critical cyber-physical systems

A control engineering perspective

dr. ir. Sofie Haesaert

Assistant Professor TU Eindhoven

November 27, 2019

Control engineering — classically

Provide stability, performance and robustness via feedback withstanding physical uncertainty and stochasticity

Mechanical ~1788 Governor & throttle valve Ist automatic control

Analogue PID control

Digital control Optimal control Robust control Complex systems

FIG. 4.—Governor and Throttle-Valve.

Examples of digitally controlled systems

Models for digital control

state: x(t + 1) = F(x(t), u(t))output: y(t) = H(x(t), u(t))

+disturbances + sensor noise

Dynamical systems modeled via ordinary differential equation

state: $\dot{x}(t) = f(x(t), u(t))$ **output:** y(t) = h(x(t), u(t))

+disturbances

+ sensor noise

Control engineering — emerging

Technological innovations lead to increased functionality, complexity and autonomy

Waymo's fully autonomous driving

Complex merging of computation into the physical world

Increase of connectivity, functionality, complexity, and autonomy

Physical systems with software for communications, interactions, sensing, and control.

Sofie Haesaert — Safety-critical cyber-physical systems

Cyber-physical systems (CPS)

Delivery drones (amazon)

Credit: <u>dryve.com</u>

Autonomous driving

Credit: Amber

Smart grid

Credit: unsplash

Long-term autonomy

Credit: NASA/JPL-Caltech

systems

Complex merging of computation into the physical world

Increase of connectivity, functionality, complexity, and autonomy

Physical systems with software for communications, interactions, sensing, and control.

STOP: 0x0004c2 (inaccessible embedded device)

e computer will restart automatically

Sofie Haesaert — Safety-critical cyber-physical systems

Safety-critical cyber-physical

Software bugs directly affect physical world

Verify software + physical system

- Uncertain, continuous space models
- Noisy output measurements
- Stochastic disturbances

restart your computer, press Ctrl+Alt+Delete.

Dealing with stochasticity in CPS How to design and verify digital control?

High-level specifications e.g., Avoid A until K and eventually visit L ...

Physical model

- Wind & temperature
- Component failure
- Human behavior

Sofie Haesaert — Safety-critical cyber-physical systems

Digital

bstraction

Physical domain

Dealing with stochasticity in CPS How to design and verify digital control?

High-level specifications e.g., Avoid A until K and eventually visit L ...

Physical model

- Wind & temperature
- Component failure
- Human behavior

Sofie Haesaert — Safety-critical cyber-physical systems

Digital

bstraction

Physical domain

Dealing with partial & noisy observations

S.Haesaert, P. Nilsson, et. al., ADHS conf. 2018

Dealing with partial & noisy observations How to design and verify digital control?

Computations on abstract model

- Value iterations
- Robust temporal logic satisfaction

Sofie Haesaert — Safety-critical cyber-physical systems

Control refinement to gMDP

- Preserves guarantees

Dealing with model uncertainty in CPS

How to verify functionality using data?

Partially unknown system

Use prior knowledge and data Solution: Compute confidence with Bayesian inference Data obtained from $\mathsf{P}\left\{\mathsf{M}(\theta) \vDash \psi \mid (u, y)_t\right\}$ system

Sofie Haesaert — Safety-critical cyber-physical systems

$$\rightarrow \qquad x_{t+1} = f(x_t, u_t; \theta) + v_t \\ y_t = h(x_t; \theta) + e_t \qquad M(\theta) \text{ Parametr} \\ \theta = \text{unknown parameter}$$

S. Haesaert et al. ACC15, CDC15, Automatica17

Dealing with model uncertainty in CPS How to collect the right data efficiently?

Design experiment input to gain information on property satisfaction.

$$\mathsf{P}\big(\mathsf{M}(\theta) \vDash \psi \mid \{u, y\}_t\big)$$

Data from experiment

= Optimal control problem Maximize probability of reaching decision

Sofie Haesaert — Safety-critical cyber-physical systems

Some data is expensive

S. Haesaert et al. ACC15, ECC16

safety-critical cyber-physical systems

A control engineering perspective

dr. ir. Sofie Haesaert Assistant Professor TU Eindhoven The Netherlands

Thank you for your attention

Contact me at Sofiehaesaert.com <u>s.haesaert@tue.nl</u>

