### Radiation therapy Planning and Treatment

Aaron Asfaha Radiation therapist Division of cancer medicine Oslo university hospital



### Radiotherapy

- Treatment of cancer by using high energy radiation
- The treatment aim can be:
  - radical in order to cure the patient only with radiotherapy or in combination with other modalities
  - local control (stop tumor growth)
  - relieve pain (palliation)





#### **RT- Treatment**

**External** radiation therapy by high energy photons, electrons, protons or other particles

Internal; brachyterapi, radioactive sources

Radiation causes permanent DNA damage Unrepaired DNA damage leads to cell death

#### Fractions:

- smaller doses over a period of several days, there are fewer toxic effects on healthy cells
- healthy cells repair damage better than cancer cells









# The principle for curative treatment is to kill <u>all</u> the cancer cells without destroying too many normal cells

#### How do we achieve that???





#### The chain of radiotherapy







# Tumour localisation and target definition





#### The chain of radiotherapy







#### **Tumour localisation**

- X-ray
- CT
- MR
- PET
- Ultrasound
- Combination of modalities





# **CT-based 3D planning**

• High geometrical precision



- Difficult to distinguish between different soft tissues
- Tissue density information for dose calculation





#### MR

- Based on small variations in the magnetic properties of the tissue
- High resolution (however, geometrical distortions)
- High contrast between different soft tissues



• No tissue density information





#### CT vs MR





Observer 1





Observer 2





PET



#### PET<sub>&</sub>CT







#### CT + PET







# Fixation – positioning the patient optimally

Aim: to allow reproduction of planned patient position and minimize intra fractionation movements



#### Various fixation devices







#### Treatment





#### Journey, Breast treatment

#### **CT-Simulator**

Planning, approval



#### Treatment







#### **CT** simulator breast

- 3D for planning
- Immobilization device; Wingstep, kneefix
- Reference points
- Small mark on the skin or tatoo (Align RT 2022)
- «Gating» DIBH CT (Deep inspiration breath hold)
- CT scan











#### Dose planning





- Based on CT-image
- Fusion with other image modalities
- Correcting for inhomogenous anatomy
- Target volume delineation
- Organs at risk delineation



#### Dose planning of ca mammae



- One treatmet field
- Gantry 0°
- Uneven dose distribution
- Ipsilateral lung
- Heart
- Normal tissue





#### Dose planning of breast



- Tow fields + segments
- Gantry ~50° / 310°
- Dose distribution
- Ipsilateral lunge
- Heart
- Normal tissue
- Include lymph node = multiple fields





### AlignRT







### AlignRT





## AlignRT

| w      | Cauth Admitish | NUT Se wetter | Mena<br>Conti | Surface Cat RGE | Contraction of the local data | 1.1  | Safa Stern   |
|--------|----------------|---------------|---------------|-----------------|-------------------------------|------|--------------|
| VRT    |                |               |               |                 |                               | a de | Beam<br>HELD |
| LNGom  | 1000<br>1000   |               |               |                 | 6                             |      |              |
| LATom  |                |               |               |                 |                               | ×1   |              |
| MAGom  |                |               |               |                 |                               | 1    |              |
| YAW    | <del></del> :  |               |               |                 |                               |      |              |
| Roll®  | ie+1           |               |               |                 |                               | 11/  |              |
| Pitch' | 344 S          |               |               |                 | Q Q                           | Y 🥖  |              |

#### Treatment

- Linear accelerator rotates 360°
- MLC (Multi leaf collimator)
- Lead blades for individual shaped treatment field









#### Brachytherapy



## Background

- Radiotherapy only curative treatment option for locally advanced cervical cancer
- Challenge:
  - A centrally placed tumor in the pelvis
    positioned directly between
    radiosensitive organs (bladder,
    rectum, sigmoid and small bowel)







### Gynecological cancer

- Radiotherapy only curative treatment option for locally advanced cervical cancer
- Challenge:
  - A centrally placed tumor in the pelvis positioned directly between radiosensitive organs (bladder, rectum, sigmoid and small bowel)
- 85-90 Gy to tumor/cervix is required to cure the patient
- Tolerance of the above mentioned OAR lies well below these doses
- How to achieve an effective but safe dose distribution?





#### Treatment locally advanced cervical cancer

- External RT 1.8 Gy x 25 to the pelvis

- External RT boost 2 Gy x 10 to pathological lymph nodes
- Brachytherapy 7.2 Gy x 4 to tumor/cervix
- Weekly concomitant cisplatin 40 mg/m<sup>2</sup>









#### Everyone gets treatment with Volumetric Modulated Arc Therapy (VMAT)







#### But where is the target?







#### MRI







#### Does MRI based BT improve Overall Survival?

- 140 patients treated with MRIbased brachytherapy (IGABT)
   2005-2011. GEC-ESTRO guidelines
- 99 patients treated with CT based brachytherapy 1994-2000. Dose prescription to point A (NOCECA)



Time (years)

Significant improved overall survival (79 vs 63%) and  $\sim$  50% decrease in toxicity



#### Conclusion:

Advantages of MRI based image guided brachytherapy (IGABT)

- Improved tumor coverage (especially large volume disease)
- Decreased dose to critical organs (especially for small cervix)
- A favourable therapeutic ratio (High local control rate minor treatment related morbidity)





#### BEFORE











#### Thank you for your attention





