BioSynergy Antibody AC101 (1A12) in HER2+ Gastric Cancer

Jong-Seo Lee, Ph.D

AbClon

Your Hope We Keep

Antibody plants in Korea

Process development

The EU biosimilars landscape is growing fast

AbClon Inc.

- Based in Seoul, KOREA
- 2010 founded by Korean & Swedish Scientists
 Mathias Uhlen, Carl Borrebaeck and Atlas Antibodies
- Jong-Seo Lee, CEO
- 40 employees
- 20 Million USD invested
- Under Listed Examination Standard in Seoul, KOSDAQ

R&D programs, Business:

- Development of Biosynergic ACMab with Alligator Bioscience
- Development of AffiMab with Affibody
- Co-development of therapeutic Antibodies with partners
- Antibody services and reagents for research and development
- ADDs (Advanced Drug Discovery supports)

Strategy for drug development

Strategy for Novel Therapeutic Antibodies: Novel Epitope Discovery from Clinically Validated Target

Development Strategy

■ Different epitope ? → Different Effect !

Concept of BioSynergy Ab

BioSynergy Ab can meet the unmet-medical needs

Type C(new type): curable

Different Epitope, Different Effect

(Eigenbrot C et al., Proc Natl Acad Sci U S A. (2010) 107(34):15039-44)

- DEDE: Different Epitope Different Effect
- Therapeutic antibodies have frequently distinct mode-ofaction according to their epitopes.
- Herceptin (trastuzumab) binding to domain-IV region of HER2, and its 2010 sales was 6 billion USD
- Perjeta (pertuzumab) binding to domain-II region of HER2, and its sales expected sales are 500 million ~ 2 billion US\$.

Consensus outlook for Herceptin and Perjeta (\$m)

	2014	2015	2016	2017	2018	2019	2020
Herceptin	6939	6611	6104	5447	5306	4070	3476
Perjeta	816	1327	1851	2640	3363	4875	5532

www.firstwordpharma.com, source: Bloomberg

| Unmet medical needs: monotherapy of Herceptin against breast cancer

Advance in treatment has combined two antibodies targeting different HER2 domains

CLEOPATRA (Clinical Evaluation of Pertuzumab and Trastuzumab)

- Both pertuzumab and trastuzumab target HER2, but different epitopes.
- Combination treatment of pertuzumab and trastuzumab increase survival rate of HER2 positive breast cancer patients.

http://www.cancernetwork.com/conference-report/top-8-highlights-esmo-2014-congress

HER2 is over-expressed in gastric cancer

- Gastric cancer (GS) is a major global health problem.
 - 1 million new cases of gastroesophageal and gastric cancer are diagnosed annually.
 - The third leading cancer cause of death globally.
 - 1st or 2nd cancer incidence in Asia including Korea, Japan, China.
- HER2 positive rate in gastric cancer: 22% (n=3,667) FISH/IHC
 - ToGA trial
 - HER2 is associated with bad prognosis in gastric cancer.
- FDA approves Herceptin for HER2-positive metastatic gastric cancer
 - Combination with chemotherapy (cisplatin or 5-fluorouracil [5-FU]) for HER2-positive metastatic cancer of the stomach or gastroesophageal junction.

HER2 Biosynergy Ab.

■ ToGA (trastuzumab with chemotherapy in HER2-positive advanced Gastric Cancer) initiate approval of Herceptin for GC whilst it has limitation.

Bang YJ et al. (2010) Lancet. 376(9742):687-97

NEST Platform

Priority to Patents Unique to Pharmaceutics

(Biochemical window)

- Affinity ranking
- Simultaneous binding
- Epitope binning
- Epitope mapping

Efficacy (Pharmacological window)

- Single/combination treatment
- Cell line profiling (sensitive & resistant)
- Matrix

Mode-of-Action (Biological window)

- Neutralization
 - **Cell signaling**
- Apoptosis
- Cell cycle arrest
- ADCC/CDC

AC101(1A12) to Her2 positive

In vitro efficacy in gastric cancer cells

- Antitumor activity of AC101 in HER2-overexpressing gastric cancers
- Cell viability assay in OE-19 and NCI-N87

In vivo efficacy: OE-19

- Antitumor activity of AC101 in OE-19 xenograft model (i.p, two times a week for 3 weeks)
- Monitoring of tumor growth and body weight

In vivo Efficacy: OE-19

- Tumor mass: OE-19, HER2 positive gastric cancer cells.
- Injection point: 500 mm³.
- Combination of Herceptin and AC101 reduce tumor mass in 21 days.
- Combination of Herceptin and AC101 is superior to Herceptin, Perjeta and the combination of these two antibodies.

* 1F11: another affinity-matured clone

In vivo Efficacy: OE-19

- Antitumor activity of AC101 in OE-19 xenograft model (i.p, two times a week for 3 weeks)
- Monitoring of tumor growth and body weight

In vitro efficacy profile: gastric cancer cells

- Established human gastric cancer cell panel
- Cell viability assay & ErbB expression

Efficacy: Combination with chemotherapy

In vitro efficacy

Combination with chemotherapy

Unpublished data

Efficacy against breast cancer

In vitro profile: Breast Cancer Cells

Unpublished data

AC101 could overcome the trastuzumab-resistance in HCC-202

Efficacy against breast cancer

In vitro efficacy: breast cancer

Anti-proliferative activity of AC101 in TRA-resistant breast cancers

Unpublished data

Mode-of-action: Affinity

■ AC101 has the highest affinity (lowest Kd) among HER2 binders.

Clone	Ka (1/Ms)	Kd (1/s)	KD (M)
TRA (trastuzumab)	4.90E+04	1.50E-04	3.00E-09
PER (pertuzumab)	3.80E+04	1.20E-04	3.30E-09
hz1E11	3.60E+04	8.30E-04	2.30E-08
AC101	6.40E+04	9.90E-05	1.50E-09

Mode-of-action: Specificity

Epitope

Unpublished data

Sub-domain IV, simultaneous binding with trastuzumab, conformational epitope

MoA: Specificity

HER family and Species cross-reactivity

- Specificity: HER2-specific binding in ErbB family
- Species cross-reactivity: cross-reactive with monkey but not with rodent HER2s

MoA: Apoptosis

Apoptosis (in vitro)

- AC101 induces apoptosis in HER2-positive NCI-N87 gastric cancer
- Flow cytometry analysis (PI & Annexin-V staining) & Caspase-3/7 activity

MoA: Apoptosis

Apoptosis (in vitro)

- AC101 induces apoptosis in HER2-positive BT-474 breast cancer
- Flow cytometry analysis (PI & Annexin-V staining)

Apoptotic cell population in BT-474 breast cancer cells

MoA: Apoptosis

Apoptosis (in vivo)

- Combination treatment of AC101 and trastuzumab increases apoptotic cell population in xenograft models
- TUNEL assay

Mode-of-action: Inhibition of Survival Signalings

Innovative Therapeutic Antibody 사용 AbClog 앱클론주식합

HER2 downstream signaling

- Inhibition of ErbB signaling : Combination of AC101 and trastuzumab inhibits phosphorylation of Her2, Her3 and EGFR
- Regulation of Survival signaling molecules includingPI3K/Akt and ERK pathways is weakly inhibited but not clear

Mode-of-action: Cell Cycle Arrest

Cell Cycle Arrest

- Cell cycle arrest activity of AC101 in NCI-N87 : flow cytometry & WB analysis
- Flow cytometry data is analyzed with Multicycle in FCS Express (De Novo Software)

Proposed Mode of Action

■ Combination of AC101 and trastuzumab inhibit both dimerization pathways and induce increased apoptosis and cell-cycle arrest

Manufacturability

Stability

Unpublished data

- The solubility of AC101 is higher than 12.8 mg/mL in PBS buffer condition.
- AC101 has good physical/structural stability.

- AC101 is novel HER2 targeting therapeutic antibody.
- AC101 is synergistically efficacious against HER2 positive gastric cancer when it is combined with trastuzumab (TRA).
- AC101 is binding to distinct HER2 epitope from TRA or PER.
- Combination of AC101 and TRA induces increased apoptosis, cell-cycle arrest and endocytosis.
- AC101 is possible treatment to Herceptin resistant cancers even which have high level of Her2 and Her3 proteins.

Acknowledgement

- Supported by KDDF (Korean Drug Development Fund)
- AbClon Inc.
 - Bong-Kook Ko
 - Kyu-Tae Kim
 - All researchers at AbClon
- Royal Institute of Technology
 - Mathias Uhlén
 - Johan Rockberg
- Asan Medical Center
 - Eun Kyung Choi

- Lund University
 Carl Borrebaeck
- Alligator Bioscience
 - Per Norlén
 - Christina Furebring
- Affibody AB
 - Fredrik Frejd
 - Caroline Ekbald
- Scientific advisors
 - Junho Chung (SNU)
 - Hyun-Bo Shim (EWHA)